Gene Ontology-driven similarity for supporting the prediction of integrated functional networks

Francisco Azuaje
University of Ulster, UK

Goals of this research

- ◆ To propose a method to incorporate GO-driven information into the inference of functional networks
- ◆ To study their properties and relationships with other predictive resources
- ◆ To estimate its statistical and biological relevance

♦ Our hypotheses:

- ◆ GO-driven similarity networks (GOSN) represent significant features of real functional networks
- ◆ These networks, in combination with other relevant predictive resources, may improve the overall predictive ability of integrated networks

Rationale: Post-genome biology (systems biology)

- ◆ Networks of functional relationships between genes and proteins based on different properties or resources, e.g. gene co-expression.
- ◆ A node in a network represents a gene. A connection is established if the nodes are significantly associated.
- ◆ Overlaps between different types of relationships support the idea of combining them to build more meaningful networks.
- ◆ For example, physically interacting proteins are more likely to have similar gene expression patterns, etc.

Rationale: The role of functional annotations

- ◆ Functional annotations of gene products (e.g. annotations derived from GO-driven databases) have been recently proposed to support network inference.
- ◆ The application of GO-derived information to support the prediction of functional networks of genes has not been rigorously investigated.
- ◆ Comprehensive studies on the predictive properties of such networks have not been reported.

This remaining of this presentation

- ◆ Brief introduction to the Gene Ontology (GO) and its applications
- Estimating functional similarity with the GO
- ◆ Constructing GO-driven similarity networks (GOSN)
- ◆ Integrating GOSN and other single-source networks
- ◆ Some relevant results
- Current/future work and conclusions

The Gene Ontology

- Provides structured, controlled vocabularies that can be used to describe gene products in different organisms
- ◆ GO hierarchies: *Molecular function* (MF), *biological process* (BP), and *cellular component* (CC).
- ◆ MF: The role played by individual gene products, e.g. *G-protein coupled receptor activity*.
- ◆ BP: Objective accomplished by one or more ordered assemblies of molecular function, e.g. *signal transduction*.
- ◆ CC: Cellular localization of the gene product, e.g. *nucleus* or *anaphase-promoting complex*.

The GO

- ◆ GO terms and their relationships within each hierarchy form a network in which each term has one or more parent terms.
- ◆ The relationship between a child and its parent can be either "is a" (is a kind of) or "part of".

Partial view of the GO Biological Process hierarchy

The GO and its applications

- ◆ Incorporation of GO annotations into gene expression data clustering analysis (significance of over-represented terms)
- ◆ Inference of gene-phenotype associations
- ◆ Assignment of new annotations to genes using gene expression and GO annotations
- ◆ Gold-standard in network prediction studies
- Predictive source for integrated network prediction

The GO and its applications (II)

- ◆ Estimating functional similarity using the GO and model organism databases annotated to GO (SGD, MGD, WB, etc.)
- ◆ Relationships between GO-driven similarity and sequence similarity, gene co-expression, functional interactions.
- ◆ We propose to build GOSN using non-traditional similarity assessment methods

Approaches to computing GO-driven similarity

- Edge counting
 - Intuitive
 - Requires density to be homogeneous in the taxonomy

- ◆ Information-theoretic metrics
 - Grounded in information theory
 - Compensates for heterogeneity in the taxonomy

Information-theoretic approaches

- ◆ *Information content (IC)*: nodes high in the hierarchy have a small IC
- ◆ The information shared by two nodes can also be represented by their common ancestors (least common subsumer)
- ◆ The more information two terms share, the more similar they are

Information content in GO

◆ "Taxonomy": hierarchy (DAG) of is a + part of relations

◆ Frequency distribution of GO terms: annotation

databases

ZTA1	GO:0005634
ZTA1	GO:0005737
ZUO1	GO:0003754
ZUO1	GO:0005737
ZUO1	GO:0005829
ZUO1	GO:0005840
ZUO1	GO:0006457
ZWF1	GO:0004345
ZWF1	GO:0005737
ZWF1	GO:0006098

GO-driven similarity

[Lord *et al.*, PSB 2003] [Wang *et al.*, CIBCB 2004]

- Based on the information content of the least common subsumer (LCS)
- **♦** Several variants

LCS

- Resnik (1995)
- Lin (1998)

$$sim(A, B) = \frac{2 \times \log p(LCS)}{\log p(A) + \log p(B)}$$

$$dist(A, B) = \log p(A) + \log p(B) - 2 \times \log p(LCS)$$

GO-driven similarity among gene products

sim(c,c)

sim(c,e)

sim(d,c)

sim(d,e)

$$SIM(g_1,g_2)$$

$$SIM(g_i, g_j) = \frac{1}{m \times n} \times \sum_{c_k \in Ai, c_p \in Aj} sim(c_k, c_p)$$

Constructing GOSN (I)

- ◆ GO annotations from the SGD
- ◆ Annotations encoded in the GO Biological Process hierarchy
- ◆ 57,367 pairs of genes with significant mRNA expression correlations originating from a comprehensive compendium of microarray data

Constructing GOSN (II)

- ◆ Low similarity network (LSN): a connection between a pair of genes was established if their GOS was larger than 0 under the Biological Process hierarchy.
- ◆ *Medium similarity network (MSN)*: a connection between a pair of genes was established if their GOS was larger or equal to 0.5.
- ◆ *High similarity network (HSN)*: a connection between a pair of genes was established if their GOS was larger or equal to 0.8.
- ◆ Very high similarity network (VHSN): a connection between a pair of genes was established if their GOS was equal to 1.

Constructing GOSN (II)

GOS networks vs. random networks (Mean similarity \pm S.E)

	GOS networks	Random networks	Sig.
LSN	0.374 ± 2.0 E-03	0.150 ± 4.80 E-04	p < 0.001
MSN	0.857 ± 2.0 E-02	0.289 ± 1.0 E-03	p < 0.001
HSN	0.98 ± 6.0 E-4	0.48 ± 2.7 E-03	<i>p</i> < 0.001
VHSN	1.0 ± 0.0	0.594 ± 2.0 E-03	p < 0.001

S.E: Standard error, Sig.: Significance of the difference (Student's t test).

Other networks integrated (SSN)

- ◆ *SGA* network (genetic interactions) (Tong *et al.*, 2004).
- ◆ *Homol* network: protein similarity (Altschul *et al.*, 1997) (Zhang *et al.*, 2005).
- ◆ *Coex* network: Highly co-expressed pairs of genes (Hughes *et al.*, 2000).
- ◆ *Physic* network: pairs of proteins belonging to the same protein complex (Mewes *et al.*, 2002; Gavin *et al.*, 2002; Ho *et al.*, 2002).
- ◆ *Chip* network: transcription factor-gene interactions (Tong *et al.*, 2004).

Construction of integrated networks (I)

- ◆ Different integrated networks obtained by merging all types of single-source relationships (union of networks).
- ◆ Four networks were first obtained: *intLSN*, *intMSN*, *intHSN* and *intVHSN*, which were derived from the combination of the SSN with *LSN*, *MSN*, *HSN* and *VHSN* respectively.

Construction of integrated networks (II)

- ◆ Reference integrated network, *intNonGOS*, which did not incorporate the GOS networks.
- ◆ Multiple-support integrated networks, i.e. edges supported by at least two types of functional interactions; e.g. intMSN-MS is a multiple-support, integrated network that incorporates the MSN.

Detection of potential functional modules through network clustering

Clustering of networks: Summary description

Network	NC	AC-score	AID	ANP	NC-score-5
MSN	51	3.83	91.56	12.41	9
HSN	36	3.85	84.64	10.97	8
VHSN	32	3.99	90.25	11.25	7
intLSN	-	-	-	-	-
intMSN	-	-	-	-	-
intHSN	-	-	-	-	-
intVHSN	-	-	-	-	-
intLSN-MS	-	-	-	-	-
intMSN-MS	53	3.96	99.26	15.54	11
intHSN-MS	51	3.39	75.18	13.16	9
intVHSN-MS	52	3.30	71.90	12.11	9
intNonGOS	-	-	-	-	-
intNonGOS-MS	38	2.92	41.23	10.21	5

NC: Number of clusters; AC-score: Average MCODE cluster score; AID: Average interaction density per cluster; ANP: Average number of proteins per cluster; NC-score-5: Number of clusters with MCODE cluster scores greater than 5.

Linking networks to significant functional categories and pathways (I)

intNonGOS-MS: Linking clusters to MIPS functional categories and KEGG pathways

Cluster	Sample of significantly-represented MIPS functional categories (number of proteins)	Associations with KEGG pathways (number of proteins)
1	Stress response (9); Extracellular/secretion protein (1); Cell membrane (1); Unclassifierd (12)	- -
2	Regulation of splicing (1);Ribosome biogenesis (25);ribosomal proteins (25);nucleic acid binding (6);RNA binding (6).	Ribosome (25)
3	Transposable elements, viral and plasmid proteins (19)	-
4	Transcription (9);rRNA processing (8);Ribosome biogenesis (13);ribosomal proteins (5);nucleic acid binding (6);RNA binding (6).	Ribosome (1)
5	DNA processing (6);DNA synthesis and replication (6);DNA topology (6);DNA recombination (6);Stress response (6);Biogenesis of nucleus (6);Organization of chromosome structure (6)	-

Linking networks to significant functional categories and pathways (II) (5 out of 11 clusters)

intMSN-MS: Linking clusters to MIPS functional categories and KEGG pathways

Cluster	Examples of significantly represented MIPS functional categories (number of proteins)	Associations with KEGG pathways (number of proteins)
1	Extracellular/secretion proteins (1); Cell membrane or cell wall attached (1);Unclassified proteins (32)	Galactose metabolism (2); Starch and sucrose metabolism (2);
2	rRNA processing(35);ribosome biogenesis (17); ribosomal proteins (8);nucleic acid binding (18); RNA binding (18);Nucleotide binding (7); ATP binding (7);	Ribosome (2)
3	Ribosome biogenesis (34); ribosomal proteins (34);nucleic acid binding (5);RNA binding (5).	Ribosome (36)
4	Amino acid metabolism (29); Assimilation of ammonia (6); Metabolism of glutamine (1); Degradation of glutamine (1); Metabolism of arginine (5); Biosynthesis of arginine (5); Metabolism of urea cycle (2); Metabolism of the aspartate family (9); Metabolism of threonine (3); Metabolism of methionine (4); Metabolism of serine (3); Metabolism of the pyruvate family (5); C-compound, carbohydrate anabolism (7); Secondary metabolism (7); Complex cofactor/cosubstrate binding (6)	Valine, leucine and isoleucine biosynthesis (4); Lysine biosynthesis (5); Phenylalaine, tyrosine and triptophan biosynthesis (8)
5	Unclassified proteins (20)	Galactose metabolism (1); Pentose and glucorate interconversion (1),

Future work

- ◆ Improve cluster interpretation and validation
- ◆ Other similarity assessment methods
- ◆ Cluster-based assignment of function to uncharacterized genes
- ◆ Other integration (machine learning) methods
- Different model organisms
- Other applications of GO-driven similarity: Coexpression validity assessment, relationship with other functional properties.

Summary

- ◆ A method to reconstruct networks using similarity information extracted from the GO and the *Saccharomyces* Genome Database (SGD).
- ◆ GOSN represent significant features of real functional networks
- ◆ These networks, in combination with other relevant predictive resources, have the potential to improve the overall predictive ability of integrated networks
- ◆ Integrated networks comprising GOS relationships contain more meaningful clusters than those ignoring GOS-based evidence.

Acknowledgments

◆ LHNCBC, NLM, NIH:

Dr. Donald King (Acting Director)

May Cheh and Rob Logan (Program Coordinators)

Research collaborators:

- ◆ Olivier Bodenreider, NLM, NIH
- Haiying Wang and Huiru Zheng, UU
- ◆ Alban Chesneau, EMBL-Grenoble

Contact, additional information: fj.azuaje@ieee.org http://ijsr32.infj.ulst.ac.uk/~e10110731